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Tilings of the integers 2

Let A ⊂ Z be a finite set.
We say that A tiles Z (by translation) if there is a T ⊂ Z such
that ∀n ∈ Z can be uniquely expressed as a sum a + t = n, with
a ∈ A and t ∈ T .

This property we denote by A⊕ T = Z.

Proposition (Newman, Hajós)

T is periodic, i.e. ∃M ∈ N and a finite set B ∈ Z such that
T = B ⊕MZ.

For such a B we have |A||B| = M and A⊕ B = ZM . All results on
ZM can be translated back to the integer setting. Thus, from now
on, we will work on ZM .
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For any s|M, we have Φs | (XM − 1), so that Φs |A if and only if
Φs | (A mod M).

Note that A mod M need not be a set hence we introduce the
multiset notation.

• M(ZM) denote the set of all multisets in ZM with weights in
Z (so that both positive and negative weights are allowed)

• M+(ZM) if we only allow positive weights.

For a ∈ ZM , let wA(a) denote the weight of a in A.

The mask polynomial of the multiset A by

A(X ) =
∑
a∈ZM

wA(a)X a.

In particular, A ∈ M(ZM) is a set if and only if wA(x) ∈ {0, 1} for
all x ∈ ZM .



Using the mask polynomials A⊕ B = ZM is equivalent to

A(X )B(X ) = 1 + X + . . . + XM−1 mod (XM − 1).

Equivalently,

|A||B| = M and ∀1 ̸= m|M,Φm(X ) | A(X ) or Φm(X ) | B(X ),

where Φm be the cyclotomic polynomial of order m.

Given a set S = {s1, s2, . . . , sk} of divisors of M.

Our goal would be to decide whether there exists a set / tile A
satisfying Φsj (X ) | A(X ) (1 ≤ j ≤ k), and

|A| = A(1) =
∏

p
mi
i ∈S

Φp
mi
i

(1).
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Coven-Meyerowitz theorem 5

Theorem (Coven and Meyerowitz, 1999)

Let A be a finite set of integers and

S∗
A := {pα : pα is a prime power and Φpα(X )|A(X )}.

Consider the following two conditions
(T1) |A| = A(1) =

∏
s∈S∗

A
Φs(1),

(T2) if s1, . . . , sk ∈ S∗
A are powers of different primes, then

Φs1...sk (X )|A(X ).

Then

• If A satisfies both (T1) and (T2) then A tiles Z.
• If A tiles Z then it must satisfy (T1).

• If A tiles Z, and |A| has at most two prime factors, then it
satisfies (T2).
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Conjecture and generalization 6

Conjecture (Coven-Meyerowitz conjecture)

A set tiles the integers if and only if it satisfies (T1) and (T2).

It is still open.

But it is known to be true in some special cases.

Theorem ( Laba-Londner, 2025)

The Coven-Meyerowitz conjecture is true in ZM if any of the
following conditions holds.

• M | pm1 pn2
∏L

i=3 pi ,

• M | p21p22p23
∏L

i=4 pi ,

where p1, p2, p3, pi ’s are distinct primes.



Conjecture and generalization 6

Conjecture (Coven-Meyerowitz conjecture)

A set tiles the integers if and only if it satisfies (T1) and (T2).

It is still open. But it is known to be true in some special cases.

Theorem ( Laba-Londner, 2025)

The Coven-Meyerowitz conjecture is true in ZM if any of the
following conditions holds.

• M | pm1 pn2
∏L

i=3 pi ,

• M | p21p22p23
∏L

i=4 pi ,

where p1, p2, p3, pi ’s are distinct primes.



Conjecture and generalization 6

Conjecture (Coven-Meyerowitz conjecture)

A set tiles the integers if and only if it satisfies (T1) and (T2).

It is still open. But it is known to be true in some special cases.

Theorem ( Laba-Londner, 2025)

The Coven-Meyerowitz conjecture is true in ZM if any of the
following conditions holds.

• M | pm1 pn2
∏L

i=3 pi ,

• M | p21p22p23
∏L

i=4 pi ,

where p1, p2, p3, pi ’s are distinct primes.



A strategy to verify CM-conjecture 7

One possible avenue of approach is to consider (T1) as an upper
bound on the size of A, and ask whether a set obeying this bound
may have additional cyclotomic divisors that would allow a failure
of (T2) for its tiling complement.

The details are as follows.

Definition

Let A ⊂ ZM , and let Φs(X ) | A(X ) for some s | M. We say that
Φs is an unsupported divisor of A if:

(i) for every prime p such that p | s, we have p | |A|,
(ii) for every prime power pα such that pα ∥ s, we have Φpα ∤ A.
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Questions 8

Question (A)

If A ⊂ ZM satisfies (T1), may it have unsupported divisors?

Question (B)

If A ⊂ ZM satisfies (T1) and (T2), may it have unsupported
divisors?

Proposition

Let A⊕B = ZM such that each prime factor of M divides both |A|
and |B|.

(i) If the answer to Question (A) is negative for this value of M,
then both sets A and B satisfy (T2).

(ii) If the answer to Question (B) is negative for this value of M,
then, if (T2) holds for A, it must also hold for B.
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Theorem

There exists M = pnqm and a nonempty set A ⊂ ZM satisfying
(T1), and A(X ) has at least one unsupported cyclotomic divisor.

Theorem

There exists M = p41p
4
2p

4
3p

4
4 and a nonempty set A ⊂ ZM satisfying

both (T1) and (T2), and A(X ) has at least one unsupported
cyclotomic divisor.

However, in the ’two-prime-divisor’ case we can prove the following.

Theorem

Let M = pnqm. Assume that a nonempty set A ⊂ ZM satisfies
(T1) and (T2). Then A(X ) cannot have unsupported cyclotomic
divisors.
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Lower bound for the size of sets with given
cyclotomic divisors 10

Let S = {s1, s2, . . . , sk} be the divisors of M, and A be a
nonempty set in ZM such that Φsj (X ) | A(X ) (1 ≤ j ≤ k).

Question

What is the minimal size of A?

i.e,

MIN(S) := min{|A| : A ̸= ∅ and Φs(X ) | A(X ) for all s ∈ S}?

Motivation:

Proposition (Lam and Leung)

If Φs(X )|A(X ) for some 1 < s ∈ N, then

|A| ≥ min{p : p | s, p is prime}.
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Illustration 11

Take some cyclomatic divisors of M = p4q4 and we add an extra
divisor as below.

S = {q, pq2, pq4, p4q2}

What is the minimum size of A s.t. ΦqΦpq2Φpq4Φp4q2 | A(X )?

Is it smaller than the min. size of A if Φp3q3 | A(X ) is added?

Is MIN(S) < MIN(S ∪ {p3q3})?



Examples 12

If |S | = |{s1, s2}| = 2 such that si ∤ sj (i ̸= j ∈ {1, 2}), then it is
easy to show that MIN(S) ≥ (min(p, q))2.

In the first three cases we get that MIN(S) ≥ pq min(p, q).

In the last case ΦpqΦp2q2Φp3q3 | A(X ) holds and we get that
MIN(S) ≥ (min(p, q))3.



Generalizations I. 13

Proposition

Let A ∈ M+(ZM) with M = pn1qn2 . Assume that
Φpm1 · · ·Φpmr ΦpαqβΦqγ |A

• for some 1 ≤ α < m1 < · · · < mr ≤ n1 and 1 ≤ β ̸= γ ≤ n2,

• for some 1 ≤ m1 < · · · < mr < α ≤ n1 and 1 ≤ γ < β ≤ n2.

Then |A| ≥ prq min(p, q). Hence MIN(S) ≥ prq min(p, q).



Generalization II.- Diagonal case 14

Let s =
∏L

i=1 p
βi
i , then D(s) = s∏L

i=1 pi

Theorem

Let M =
∏L

i=1 p
ni
i . Assume that S = {s1, . . . , sm} satisfies sj | M

and
sj | D(sj+1) for j = 1, . . . ,m − 1. (1)

Then MIN(S) ≥
∏m

j=1 mini :pi |sj pi



Examples without size increase 15

Proposition

Let M = pnqm with n ≥ 9 and m ≥ 6, and let p = 2, q = 3. Then
there exists a set A ⊂ ZM such that

ΦpnΦpn−1Φpn−2ΦqmΦqm−1Φqm−2Φpq | A

and |A| = p3q3 = 216.

Proposition

Let M = p4q4, p = 2, q = 3. There exists a set A ⊂ ZM such that

ΦpΦp2Φp3ΦqΦq2ΦM | A

and |A| = p3q2 = 72.



Fibers, fibered sets 16

Let N | M, and let pi be a prime such that pi | N. We define

FN
i (X ) = Φpi (X

N/pi ) = 1 + XN/pi + · · · + X (pi−1)N/pi ,

which the mask polynomial of the set
FN
i = {0,N/pi , . . . , (pi − 1)N/pi} mod N.

A pi -fiber on scale N is a translate of FN
i .

A ⊂ ZM is fibered on scale N if there exists a prime pi |N and there
exists a polynomial Q(X ) with nonnegative integer coefficients
such that

Q(X )FN
i (X ) ≡ A(X ) mod xN − 1.
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de Bruin-Rédei-Schoenberg theorem 17

Theorem

Let A ∈ M(ZM). Then the following are equivalent:

(i) ΦN(X )|A(X ),

(ii) A mod N is a linear combination of N-fibers, so that

A(X ) =
∑
i :pi |N

Pi (X )FN
i (X ) mod XN − 1,

where Pi (X ) have integer coefficients.

Proposition (de Bruin, Lam-Leung)

Let A ∈ M+(ZM). Assume that ΦN |A, where N has two distinct
prime factors p1, p2. Then

A(X ) = P1(X )FN
1 (X ) + P2(X )FN

2 (X ) mod XN − 1,

where P1,P2 are polynomials with nonnegative coefficients.



Long fibers 18

Definition

Let M =
∏K

i=1 p
ni
i , and let 1 ≤ α ≤ ni . We say that a set F ⊂ ZM

is a pαi -fiber on scale M if F ≡ x ∗ Fi ,α mod M for some x ∈ ZM ,
where

Fi ,α(X ) :=
α∏

ν=1

Φpi

(
XM/pνi

)
≡ XM − 1

XM/pαi − 1
.

We refer to pαi -fibers with α > 1 as long fibers in the i direction.

Fi ,α(X ) = 1 + XM/pαi + X 2M/pαi + · · · + X (pαi −1)M/pαi .



Generalization of de Bruin-Rédei-Schoenberg
theorem 19

Proposition

Long fiber decomposition Let M =
∏K

i=1 p
ni
i , and let N|M satisfy

N =
∏K

i=1 p
ni−αi+1
i with 1 ≤ αi ≤ ni . Let A ∈ M(ZM), and

assume that ΦL(X ) | A(X ) for each N | L | M. Then, there exist
polynomials Pi (X ) ∈ Z[X ] such that

A(X ) = P1(X )F1,α1(X ) + · · · + PK (X )FK ,αK
(X ) mod XM − 1.

Moreover, if A ∈ M+(ZM) and K = 2, then we may assume that
the polynomials P1(X ) and P2(X ) each have non-negative
coefficients.



Truncation I. 20

The truncation procedure allows us to reduce proving lower bounds
on MIN(S) to proving similar bounds with S replaced by a simpler
set.

In order to discuss the statement we need the following definition.

Definition

Let S be the subset of the div. of M and 1 ≤ i ≤ K the number of
prim div. of M, we define

EXPi (S) := {α ≥ 1 : ∃ s ∈ S with pαi || s}, Ei := #EXPi (S).

It will be useful to arrange the sets EXPi (S) in increasing order:

EXPi (S) := {αi ,1, · · · , αi ,Ei
}, 1 ≤ αi ,1 < · · · < αi ,Ei

.



Truncation II. 21

Proposition (Truncations)

Let S be a subset of the divisors of M, and let A ∈ M(ZM) satisfy
Φs |A for all s ∈ S. Define M ′ := pE1

1 · · · pEK
K . Then, there exists a

multiset A′ ∈ M(ZM′) satisfying

(i) A′(1) = A(1).

(ii) For every N = p
α1,ℓ1
1 · · · pαK ,ℓK

K ∈ S, we have ΦN′(X ) | A′(X ),

where N ′ := pℓ11 · · · pℓKK | M ′.

Furthermore, if A ∈ M+(ZM), then A′ ∈ M+(ZM′).



Truncation- An example 22

Suppose that Φs |A for all s ∈ S , where

S := {p31 , p22 , p42 , , p31p42 , p101 , p102 , p101 p102 }.

Then, EXP1(S) = {3, 10} and EXP2(S) = {2, 4, 10} so that
M ′ := pE1

1 pE2
2 = p21p

3
2 .

Then the truncation procedure furnishes a multiset A′ ∈ M(Zp21p
3
2
)

such that A′(1) = A(1) and Φs |A′ for all
s ∈ S ′ := {p1, p2, p22 , p1p22 , p21 , p32p21p32}.

The exponent sets associated to A′ are {1, 2} and {1, 2, 3}, with
no gaps.



The cyclotomic divisors of A and A′
23

Figure: The cyclotomic divisors of A

Figure: The cyclotomic divisors of A′



Theorem

Let M = pn1qn2 , and let S = {s1, s2, s3} and si | sj for
i ̸= j ∈ {1, 2, 3}. Then

MIN(S) ≥ (min(p, q))3

.

Sketch of proof. By the truncation procedure and further
reduction, we can assume that all of the exponents are at most 2
or we have the diagonal case. So we get the following four cases
(up to symmetry):



ΦpnΦpn−1Φpn−2ΦqmΦqm−1Φqm−2Φpq | A & |A| = p3q3
25

In our example M = pnqm with n ≥ 9 and m ≥ 6, and
p = 2, q = 3

First we define a multiset B ∈ M+(Zpq) (p = 2, q = 3).

Each column sum is divisible by 27 and each row sum by 8.

B is a sum of p- and q-fibers.
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Now we construct a set A ⊂ ZM such that A ≡ B mod pq.

As we have ΦpnΦpn−1Φpn−2 | A(X ), A mod pn must be the union
of long p3-fibers on scale M. A has to be a set, which is
guaranteed if they are disjoint.

If n ≥ 9, then we have enough space for that.

ΦqmΦqm−1Φqm−2 | A(X ) implies that A mod qm has to be the
union of (disjoint) long q3-fibers.

If m ≥ 6, then they can be taken to be disjoint.



ΦpΦp2Φp3ΦqΦq2ΦM | A(X ) and |A| = p3q2 = 72 27

Now M = p4q4, p = 2, q = 3.

The following table represents a multiset B ∈ M+(Z72), where the
cyclic group Z72 is written as Z8 ⊕ Z9



The entries in each column add up to 8, and the entries in each
row add up to 9. This guarantees that

ΦpΦp2Φp3ΦqΦq2 | B.

Now we construct a set A ⊂ ZM such that B ≡ A mod p3q2 and
ΦM | A.

Each positive entry (2, 3, 4, 5) in the table is a nonnegative
integer coefficient linear combination of 2 and 3. Hence, we may
define A is each Zpq2 coset to be either just a single 2-fiber, or a
single 3-fiber, or two 2-fibers, or a 3-fiber and a 2-fiber, where each
fiber is on scale M.

If there is two fibers in one Zpq2 coset, we place them in different
Zpq cosets of it, guaranteeing that they do not overlap.

Hence A is a set satisfying the requirements.



Possible generalization 29

The previous construction can be extended to any primes p ̸= q.

Theorem

Let p, q be any two distinct primes. We can choose a, b, n,m ∈ N
(a << n, b << m) large enough so that there is a set A of size
|A| = paqb that satisfies

ΦpΦp2 · · ·ΦpaΦqΦq2 · · ·ΦqbΦpnqm | A.



Further generalization 30

Two natural directions of generalization.

• simultaneous divisibility by a block of the form∏
L:L0|L|M

ΦL(X ),

where L0 = pαqβ | M = pnqm by replacing the single p- and
q-fibers with long pn−α+1- and qm−β+1-fibers.

• The construction can also be extended inductively to the case
of arbitrary finite sets of primes {p1, . . . , pr}, provided that
the parameters involved are chosen sufficiently large.



(T2) lower bound 31

Theorem

Let M = pmqn and suppose that A ∈ M+(ZM) satisfies (T2). If
there exists some N = pγqη such that ΦN(X ) | A(X ) and
Φpγ (X ),Φqη(X ) ∤ A(X ), then

A(1) >
∏
s∈S∗

A

Φs(1), (2)

where S∗
A is the set of prime powers pα such that Φpα(X ) | A(X )

In other words, if A ∈ M+(Zpmqn) satisfies (T2) and also has an
unsupported divisor ΦN(X ) | A(X ). Then A has the size increase
given in (2).



The original setup 32



The truncated version 33



Corollary

Suppose that A ⊂ N satisfies (T1) and (T2), and that
lcm(SA) = pmqn for two distinct prime factors p, q. Then A does
not have any unsupported divisors.

If A⊕ B is a tile of ZM for M = pmqn, and A satisfies (T2), then
B also satisfies (T2).

Question (’weaker’ Coven-Meyerowitz conjecture)

Is it true that whenever A⊕ B is a tile of a cyclic group and A
satisfies (T2), then B also satisfies (T2)?



Negative results in 4D 35

Theorem

Let N = p1p2p3p4 and M = N4, where

p1 > 40 and pi < pi+1 < 2pi for i = 1, 2, 3.

Then there exists a set A ⊂ ZM such that:

(i) the prime power cyclotomic divisors of A(X ) are Φpαi
(X ) for

all i = 1, 2, 3, 4 and α = 2, 3, 4,

(ii) A satisfies both (T1) and (T2), so that in particular we have
|A| = N3,

(iii) additionally, A(X ) has the unsupported cyclotomic divisor
ΦN(X ).



Tricky 4D-fiber shift 36



Properties 37

• Let A′ be a Z3
N coset, hence A′ = N3.

• Originally, we have Φm | A′(X ) for m = pki
(i ∈ {1, 2, 3, 4},k ∈ {2, 3, 4}), and all (T2) divisors given by
them.

• The shifted set A preserves this divisibility.

• We divide each side such that the shifted part in the
pi -direction is divisible by pi , and each ZM/pi coset we shift
the same number of p3i -fibers.

• Thus the set is the sum of pi -fibers, hence ΦN | A.



Final remarks 38

• The standard set (which takes one point from each
ZN3-coset) is a tiling complement but it satisfies (T2).

• It can be modified such that Φs | B(X ) whenever s|N and
s ̸= N, and ΦN ∤ B(X ) (thus (T2) fails for the set B).

• However we cannot guarantee that A tiles with B, namely we
cannot ensure e.g. that Φp1p2p23p

2
4
| A(X )B(X ) holds.

Question (’weaker’ Coven-Meyerowitz conjecture)

Is it true that whenever A⊕ B is a tile of a cyclic group and A
satisfies (T2), then B also satisfies (T2)?
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